

M87 SERIES

Crystal Oscillator | 2.5V | CMOS | 5x7mm Gull Wing Leads* | Military Grade

Features

- Ruggedized Design
 - High-Shock & Vibration
- Industry Standard Package
- Shortest Lead Time
- Best Stability Over Temperature
- Smallest Hi-Rel Package
- ackage

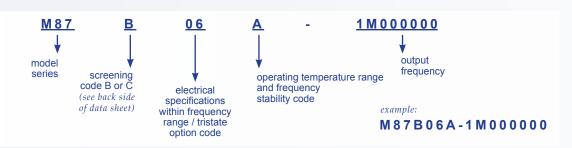
 Customer Support & Service
- ECCN EAR 99
- See M89 Datasheet for 5V Operation
- Robust, Rugged, High Shock Crystal Support (3 or 4 point Crystal Mount)

Electrical SPECIFICATIONS

Dash Number		Frequency	Supply	Rise/Fall	Symmetry	Aging	Stability over Operating Temperature				
	No TriState	With TriState	Range (MHz)	Current @ 3.3V ±10% (mA)	Time (tr/tf) max (nsec)	min / max (%)	per year max <u>1</u> / (ppm)	-55°C to +150°C (ppm)	-55°C to +125°C (ppm)	-55°C to +105°C (ppm)	-20°C to +70°C (ppm)
	CODE	CODE						CODE H	CODE	CODE	CODE
	04	05	0.25 to 0.9	2	5	48/52	±5	±70	±50	±40	±25
	06	07	1 to 7.9	2	5	48/52	±5	±70	±50	±40	±25
	08	09	8.0 to 15.9	3	4	45/55	±5	±70	±50	±40	±25
	10	11	16 to 49.9	3	4	45/55	±5	±70	±50	±40	±25
	12	13	50 to 64.9	4	3	40/60	±5	±70	±50	±40	±25
	14	15	65 to 84.9	6	3	40/60	±5	±70	±50	±40	±25
	16	17	85 to 99.9	8	3	40/60	±5	±70	±50	±40	±25
	18	19	100 to 120	12	3	40/60	±5	±70	±50	±40	±25

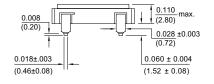
Please Contact Us for Specification Options that are Outside of or beyond those Shown in the Table Above

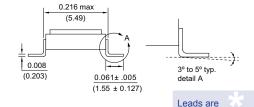
CMOS Output, 15 pF Load Output Voltage - Logic "0" is Vcc x 0.1 Vdc Output Voltage - Logic "1" is Vcc is 0.9 Vdc Start-up Time: 10 msec max

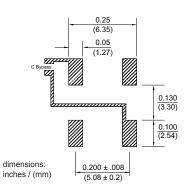

1/ Frequency Aging Limits	5 ppm per year	10 ppm per year
Max change over 30 days	±0.7 ppm	±1.5 ppm
Projected max change for 1 year after 30 days	±0.7 ppm	±1.5 ppm

Standard PIN CONFIGURATION


Pin Number	Function
1	No Connect or TriState Enable
2	Ground (case)
3	Output
4	Supply V (Vcc)


How To ORDER


MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2008 Pb-free RoHS Certified



Mechanical SPECIFICATIONS

integral to the ceramic header. They are **not** added on to the package in a post manufacturing process.

Pad 1, ESD Symbol

An external bypass capacitor 0.01µF is required between Vdd and GND

Ph. 714 373 8100 Fx. 714 373 8700

Screening	Method Level:	В	
Non-Destruct Bond Pull	MIL-STD-883, Method 2023	•	
Internal Visual	MIL-STD-883, Method 2017, Class H; Method 2032, Class H	•	
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	Τ
Temperature Cycling	MIL-STD-883, Method 1010, Condition B	•	
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)	•	Ī
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1	•	
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	Ī
Electrical Test	Functional Test Only	•	
Marking & Serialization	MIL-STD-1285	•	
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes	•	
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min		
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min	•	
External Visual & Mechanical	MIL-STD-883, Method 2009.10	•	
b) Frequency stability is tes extremes and at +25°C a	uency, output waveform, are tested at +23°C ±2°C ted over the specified temperature range; at both t a minimum of 5 temperature increments ata is by lot # and then serial #	•	

note: other screening levels and custom test plans available.

Other Leaded 5x7 mm Ceramic SMD for Military Applications, Please Iquire!

Features

- Ruggedized Design
- High-Shock & Vibration
- Made in the USA
- ECCN EAR 99
- Industry Standard Packages
- Highest Temperature Ranges
- Wider Frequency Ranges
- Higher Reliability
- Smaller Packages
- Lowest Current
- Best Service

Applications

- Mobile and Stationary Systems
- Aircraft Engine
- Radar DSP
- Vision Systems
- Aircraft Control
- Position Sensors
- Drone

- Smart Ammunition
- Deep Space Robotic
- Navigation Systems
- Guidance Systems
- Short & Long Earth Orbit Missions
- Commercial Satellites
- Reusable Rockets

Environmental COMPLIANCE							
Environmental	Specification	Method Condi	Method Condition				
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz			
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Random			
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5 ms			
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak			
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak			
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum			
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis			
Thermal Shock	MIL-STD-202	Method 107	Condition B				

continued...

Environmental	Specification	Method	Condition
Ambient Pressure	MIL-STD-202	Method 105	Condition C
Resistance to Soldering Heat	MIL-STD-202	Method 210	Condition C
Moisture Resistance	MIL-STD-202	Method 106	with 7B Sub-cycle
Salt Atmosphere	MIL-STD-883	Method 1009	Condition A (24 hrs)
Terminal Strength	MIL-STD-202	Method 211	Test Condition D
Solderability	MIL-STD-883	Method 2003	
Resistance to Solvents	MIL-STD-202	Method 215	

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2008 Pb-free RoHS Certified

Military Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534 Hybrid Microcircuits, General Specification For
MIL-STD-202 Test Method Standard, Electronic and Electrical Components
Test Methods and Procedures for Microelectronics
MIL-STD-1686 Electrostatic Discharge Control Program for Protection of

Electrical and Electronic Parts, Assemblies and Equipment

Materials

- Package Materials:
 Ceramic, Alumina 90% min
- 2. External Lead Plating Material: Gold plated Kovar, 0.15 μm (60 μ inch) min, over 2.0 μm (80 μ inch) min Nickel

Products for Space Applications

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

Issue3 07272016

Ph. 714 373 8100 Fx. 714 373 8700